
N9o-25533

CLEAR: Automating Control Centers

with Expert System Technology

Peter M. Hughes
Automation Technology Section / Code 522.3

NASA / Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

The Communications Link Expert Assistance Resource (CLEAR) is a fault -isolation expert system to be utilized in the operational
environment of the Cosmic Background Explorer (COBE) Mission Operations Room (MOR). CLEAR will assist the COBE Flight

Operations Team (FOT) during periods of real-time data acquisition by isolating faults in the spacecraft communication link with
the Tracking and Data Relay Satellite (TDRS), providing advice on how to correct them, and logging the events for post-pass
evaluation.

After a brief introduction to the problem domain, this paper describes the system requirements, tool selection, development
approach, system operation and lessons learned during the transformation of the system from the prototype to the delivered,

operational system.

Introduction

The Cosmic Background Explorer (COBE) is a scientific
satellite that wilI carry three instruments to allow scientists to

investigate the possible origins of the universe. This satellite
will utilize the Tracking and Data Relay Satellite (TDRS) for
four or five 20-minute real-time communication events daily.

These events will primarily be used for uplinking stored
commands, ranging, and monitoring of the satellite's health
and safety.

The Flight Operations Analysts (FOAs) in the Payload

Operations Control Center (POCC) are responsible for the
health, safety, command and control of the COBE spacecraft.
This includes the monitoring of the communications link
between the COBE and TDRS which demands the real-time

evaluation of more than 100 TDRS and spacecraft performance
parameters. In order to isolate problems and to select

appropriate courses of action for resolving them, this
evaluation of real-time data must be correlated with a

comprehensive understanding of the TDRS and COBE systems
and their communications services. The task is complex, and,

if not handled quickly and properly, can result injx)or
utilization of TDRS services, inefficient spacecratt operations

and a potential hazard to the spacecraft's health and safety.

At present, extensive training and communication of actual

experience are used to develop the capabilities of the COBE
FOAs. Regardless, the size and complexity of the task places a
large burden on the analyst.

The Communications Link Expert Assistance Resource
(CLEAR) is a fault-isolation expert system to be utilized in the

operational environment of the COBE Mission Operations
Room (MOR) (the COBE unique portion of the POCC). This

expert system was developed to provide quick problem
detection and isolation in the communicataons hnk thus

producing a more efficient and reliable system of operations.

CLEAR will execute on one of the seven Engineering Analysis
Workstations (EAWs) used for console operations in the

COBE MOR. The Applications Processor (AP), which is the

computer that processes COBE telemetry for display in the
MOR, will provide the CLEAR system with COBE telemetry,
TDRS performance parameters and network information.
Using this data, CLEAR will monitor the COBE-TDRS
communications link in the search of problems and advise the

analyst how to correct them.

CLEAR will be the first real-time diagnostic expert system
utilized in a control center to support operations at NASA

Goddard Space Flight Center. Currently, spacecraft
communication links with the Tracking and Data Relay
Satellite are used routinely and are planned to be utilized even

more frequently and extensively by upcoming missions. This
will provide a high degree of utility of the technology
introduced by the CLEAR system.

System Requirements

The following are some of the functional and performance

requirements specifications for CLEAR.

CLEAR is to have no effect upon the Application Processor
(AP) and is to be transparent to other systems in the control
center. The CLEAR system will be a strictly passive

component of the system supporting COBE real-time
operations. As an advisory, diagnostic expert system,
CLEAR will monitor real-time data in an attempt to isolate

problems, providing advice on how to correct them when they
occur,

CLEAR is to be transportable within the COBE POCC. The

system will run on any Engineering Analysis Workstation in

289

PRECEDING PAGE BLANK NOT FILMED



the COBE POCC without hardware modification and with the
same operating system level software, e.g., communications
package, graphics routines and device drivers, used by other
application programs on the EAW. The workstations are
AT-class personal computers running DOS and using
non-standard graphics cards that support the Intelligent
Systems Corporation (ISC) video format for compatibility
with the POCC display systems.

CLEAR is to use the standard communication package
developed for POCC workstation applications. The data
furnished by the AP will be ordered ASCII text. The sy,gtem
will extract the TDRSS performance data, Operations Data
Messages (ODM), and spacecraft status parameters from the
communication buffer and convert them to the internal format
required by the expert system.

CLEAR is to allow the operator to input COBE and TDRSS
configuration parameter values for the subsequent TDRS
support. CLEAR will utilize these parameters to identify
misconfigurations of the communication systems in which
case the system will notify the analyst of such discrepancies.

CLEAR is to be driven by ODM and status data sent by the
AP. The expert system will monitor real-time Network
Control Center (NCC) Operations Data Messages (ODMs) and
TDRS and COBE performance parameters. When CLEAR
isolates a problem, it will advise the operator how to correct it.
The system will also monitor the input data frequency and will

warn the analyst if data is not received within the expected
interval (3 to 5 seconds).

CLEAR is to diagnose the faults identified during an event.
The system wilI determine possible sources or causes of a
fault, rank multiple possibilities in order of probability and
present the results to the analyst. The system will also
recommend the proper actions necessary to correct the
problem. If requested, the system will explain why it believes
that the fault exists.

CLEAR is to log all expert system activity for post event
analysis. The system will time tag all identified faults and will
record the inferences, the diagnoses, the recommendations
offeredt0 the operator. The system will provide non-realtime
utilities to print a formatted copy of the 10g, to trace and
analyze the activity of the expert system during the event and
to extract statistics for evaluation of system performance.

CLEAR is to operate in real-time with a performance
requirement derived from the expected 3 to 5 second
communication buffer (input data) arrival frequency. The
expert system will convert input data, check parameter values
and perform inferences within this time interval. Event
logging, operator dialog and explanations are not real-time
events subject to the performance requirement_

Tool Selection

The real-time response required of the CLEAR system
translated into a performance requirement for the expert
system. The data driven and diagnostic nature of the expert
system placed interface and inference logic requirements on the
tool selected to build the application. Further selection criteria
came from the hardware and software compatibility
requirements.

A number of secondary (desirable rather than mandatory)
requirements also used in the selection included cost, number

of tool users, length of tool usage, stability of supplier,
development environment and availability of source code. The
secondary selection criteria were used to rank the expert
system building tools that satisfy the mandatory requirements.

At the time of selection, several commercially available expert
system building tools met the mandatory requirements based
upon available information including independent benchmark
tests, first-hand experience and product reviews. However,
none was ranked hlgher than the 'C' Language Integrated
Production System (CLIPS).

CLIPS, a tool for the development of expert systems, was
created by the Artificial Intelligence Section of the Mission
Planning and Analysis Division at NASA/Johnson Space
Center. CLIPS is an inference engine and language syntax
which provide the framework for the construction of
rule-based production systems.

CLIPS was entirely developed in the programming language
'C' for performance and portability. The key features that
attracted us to CLIPS were:

• Forward Chaining Rules
• Portability
• Satisfactory Performance
• Provision of Source Code
• Completely Integrated With 'C'
*Extensibility
• Fully Documented

The CLEAR development team is quite pleased with CLIPS.
It suits the requirements of the system nicely, has been easy to
integrate with the data and user interface subsystems, aa_dhas
demonstrated respectable performance. The provision of the
source code with the tool turned out to be quite useful. It
provided the capability to modify the tool to accommodate
unanticipated needs of the system thus avoiding the wasted
time and effort required to switch to another expert system
shell.

System Operation

To facilitate ease of use and to reduce demands on the analyst,
user input is minimal. The only user input required is the
pre-event initialization of parameters in the Configuration
Table display (provided by the CLEAR system). Default
settings are provided for each parameter and, to further
expedite the process, a menu of common event
configurations, called "prototype-event" codes, are provided
in a menu-type format. Hence, the user only needs to select a
prototype-event code and enter the event start-time in order to
configure the expert system for operations.

The CLEAR user interface (figure 1) utilizes textual and
graphical output in a windowed format to provide the analyst
with information about the status of the communications links.
The graphics window in the top left of the screen displays the
current status of the communications links and elements of the
communications network betweeri the COBE spacecraft and
the POCC. If the parameters indicate that a link or processing
system is degrading or down, the associated icon will turn to
yellow or red, respectively, thus providing the analysts with a
reference of the status of the communications event in a quick
glance.

When the expert system isolates a problem, a description of
the problem will be displayed in the "Problems" window with
the associated advice displayed in the "Advice" window. If

290



ORIGINAL PAGE IS

OF POOR QUALITY

Figure 1.- Photograph of the CLEAR User-Interface

there are multiple problems, they are displayed from top to
bottom in order of criticality. By default, the advice of the
most critical problem is displayed in the Advice window;

however, the system can display the advice to any problem that
the analyst selects.

To assist the analyst and to promote system credibility, the
CLEAR system provides an explanation facility. When
commanded to do such, the expert system will replace the
Advice window with a static explanation of why it believes that
a specified problem exists. No backtracking or backward
chaining is conducted since the expert system must continue to
monitor the data in real-time to search for problems. Also, the

analyst can view the display page of raw data from which
CLEAR obtains its data. This can be used by the analyst to
verify the expert system's results in the manner that he/she
would have previously used.

Throughout the communications event, the CLEAR system
logs data and problems isolated in an "event log". At the
conclusion of the real-time support, the event reporting utility

automatically converts the log into a more detailed and readable
"event report". Also, a history file which contains a listing of
the problems isolated in each event and a summary of the total
number of occurrences of each problem for the mission to date

is updated. The event report is useful for verification and
debugging purposes and the history file provides information
that allows the identification and analysis of problem trends

which can be used to enhance both the knowledge base and
operational support.

Development Approach

The CLEAR Expert System was developed in three phases: a
rapid prototype phase, an operational prototype phase and an

operational development phase. The rapid prototype phase
was executed on a Lisp Machine using a high-powered, hybrid

expert system development shell. In this phase, knowledge
acquisition, requirements specification, and experimentation
with knowledge representation schemes were begun. The
system was demonstrated using simulated data provided by a
data simulator software program that ran on a mainframe and
was developed by the CLEAR team.

The operational prototype phase was conducted to further
investigate the technical feasibility of the system wimin me
functional requirements of the operational platform. The
system was fully redesigned and developed using the

programming language 'C' and CLIPS. The performance of
the system in the run-time environment was investigated using
data transmitted by the simulator at rates anticipated in

operations.

The third and final phase involved the integration, testing and
evaluation of the system in the COBE POCC. The system has

a physical interface with the computer from which the expert
system receives its data. CLEAR was tested using simulated
data from the data simulator used to test all operational

software developed for the POCC. Finally, the,,expertsystem
was demonstrated and further tested using "live data ouring

spacecraft communication simulation events (used to p..r_p,are
the Flight Operations Team in commanding and controlhng the
spacecraft). Full operational use will be realized after launch of
the COBE spacecraft which, at the time of this writing, is
scheduled for no earlier than mid-November, 1989:

291



Lessons Learned

A discussion of lessons learned, based on a retrospective
analysis of the CLEAR development experience, is presented

in this section. These points, and others, are more fully
discussed in the paper "Integrating Expert Systems into an
Operational Environment"2.

Involve the user. Involvement of the end-user in the

evaluation process of computer systems is widely recognized
as an important factor for attaining the functional goals of the
system. This involvement seems to be more important for

expert systems because, for an expert system to be successful,
the users must have confidence in the problem solving

capabilities of the system in order to fully accept it as a tool that
will enhance their productivity, consistency, etc. This is
highly unlikely ifa system is brought in from "outside" and
they are required to use it. When users are allowed to
contribute in the development of the system, not only will the
system more likely meet their needs, but they will also have

greater faith in the system thus ensuring wider acceptance.

For many expert system development teams user involvement

only consists of consulting users for feedback late in the
development process. However, if users are included
throughout the development process, many benefits will
result. For instance, early involvement will emphasize their
importance in the success of the project and, hence, they will
actually feel like integral members of the development team.
And, as integral members of the development team, not only
will they strive harder for the success of the system, they will

also become system advocates who will promote the system to
others. This is valuable in situations where the user group is

widely distributed or so large that it is unreasonable to involve
all of them in the development process. Perhaps more
importantly, an involved user will become a credible advocate
when selling the project to management.

Finally, involvement of the user will also help control the cost

of development since the user will be able to identify
undesirable aspects of the system early in the development
phase. As with any software project, the sooner problems are
recognized and corrected, the less impact they will have on the

project schedule and the less costly it will be to correct them.

Provide a robust software development e_vironment. All too
often the prototyping phase is conducted with a rich
development environment while the development environment
of the operational system is not nearly as supportive. The
flexible development environment of the prototype is chosen to

facilitate rapid coding and easy experimentation thus allowing
speedy development of a system prototype. However, upon
completion of the prototype, the development team mistakenly
may assume that the problem domain is fully understood and
the system architecture is completed. This is seldom the case.
Changes to the knowledge base and system design will be

necessary throughout the development of the operational
phase, even after delivery. Many changes will result as the
knowledge base and the user's needs evolve. Some people
will only give the system full consideration during the
development of the operational version when they realize that
the system really is going to be used in operations.

Not only will the choice of a fully supportive software
development environment enhance the development process, it
will also greatly assist in the maintenance phase. Software
maintenance, now considered an integral element of system

development by software engineers, is often over-looked by

expert system development teams. It is not uncommon for the
maintenance of conventional software systems to cost up to

50% of the original development effort4. This figure is greatly
increased by a lack of an accurate design specification and
robust development environment (that supports easy
debugging). Failure to provide a flexible software

development environmem for the development and
maintenance of the operational version of an expert system is
extremely short-sighted and often crippling to the success of
the project.

Conduct a thorough prototyping phase. Success of an

operational expert system is contingent upon a thorough
prototyping effort. The purposes of the prototyping phase
should be to:

• understand the problem domain,
• acquire the knowledge,

• identify appropriate knowledge representation schemes,
• establish rule precedence and exception handling,
• devise a suitable system architecture,

• define the requirements specification,
• analyze the business justification of the project,

• sell the project to management and the users.

Typically throughout the iterative process of prototyping, many
of these critical purposes are not addressed thus severely
jeopardizing the success of the project. Although this phase is
often viewed as an experimental process, it should be
conducted as an investigatory/preparatory phase necessary for

the proper development of an expert system intended to
support operations.

The prototype must be demonstrated to management for

approval and to the users for acceptance and feedback.
Problems can result. It is a mistake to demonstrate a prototype
with an underdeveloped user-interface (maybe consisting of
textual output, and windows for the editor, debugger); it is
equally wrong to demoa system that attempts to incorporate
any and every function related to the problem solving process.
An underdeveloped user-interface will likely appear complex or
unfriendly, thus failing to secure approval for continued

development. On the other hand, an overdeveloped
user-interface can cause two problems. First, during
development, the team will find the actual implementation of
such an over zealous prototype to be more difficult than
anticipated, delaying the project and wasting funds. Second,
if the functionality of the prototype is cut back during the
development phase, the expectations of the users will not be
met thus reducing their enthusiasm and support for the system.

A problem resulting from demonstrating a handsome,
well-behaved prototype is that some managers may want to
deliver it "as is". Although the system seems to be complete
from the outside, the developers realize that in the rush to
produce a working prototype, overall software quality and
long-term maintainability issues were not considered.
Delivering a system in this state would not only be a software

maintenance engineer's nightmare, but the resulting lack of
robustness would rightfully scare away users and, even worse,
convince operations managers that expert systems are too
unreliable to support anything outside of the research labs.

A minor problem while prototyping is the failure to record all
problems encountered, solutions used and explanations why
chosen. These records help a'emendously during the design of
the operational system and maintenance. More importantly,
these records will help ensure a smooth development of the

operational system by avoiding the duplication of costly errors.

292



Thoroughly assess the effort required to interface the expert
system to the user and the data source. A major issue usually
focused upon in the prototyping phase is the acquisition,
structure, and representation of the domain knowledge.
Although this issue is important, it shouId not overshadow the
necessity of conducting a complete system analysis to
determine the amount of effort required to interface the expert
system to the user and the data source. As with other software
development projects, this figure is often grossly
underestimated.

An accurate estimation of the effort required to develop the
interfacing subsystems is best accomplished by a system
analyst who has an understanding of the expert system, the
data source, and the dynamic nature of an expert system
development project. The knowledge engineer usually
assumes this role; however, if he has limited experience in
system analysis, the project's success can be endangered.

Test with "real" data as early as possible. Many groups
develop an expert system that must interface with other
systems for data without testing with "real" data until the final
phases of development hence relying on the data to perfectly
match its specifications as documented. This is a mistake
because real world data is often incomplete and inaccurate.5
Slight variations from the specs can create potentially serious
problems during integration and testing. Again, the earlier
problems are found, the better off the project.

If access to real data is not feasible, develop a data simulator to
facilitate testing. Although this sounds like a waste of time and
money, the effort expended to develop one will not only be
recouped through development, but it will also increase the
quality of the system. Testing can be further augmented by the
development of test suites with drivers to administer the tests
automatically, logging the results into a f'de for debugging,
maintenance, and record keeping. For large s_.stems involving
many programmers, automated test drivers w_ll ease the
laborious testing procedure that must be conducted after each
modification.

Allow an independent group to test the system. If resources
allow, arrange for an independent group to test the system,
They will usually uncover a high proportion of the bugs due to
their unbiased position and the fact that they have been
challenged to discover as many bugs and weaknesses as
possible.

Software testing is a critical element of quality assurance that is
often executed in an unorganized and haphazard manner. The
earlier bugs are isolated, the easier and less costly the removal
process will be. Bugs found late in development may force
major design changes and hence, increase development costs
and delay system delivery. Even worse, if a user isolates a
bug, his faith in the system will be diminished thus
jeopardizing acceptance of the system.

Conclusion

Over the past few years, expert systems have emerged from the
research labs to enhance a diverse array of operations. One of
the prime areas of application of this maturing technology is in
the area of real-time fault-isolation and diagnosis where the
synergistic combination of the speed and tireless attention of
the computer and the problem-solving knowledge of an expert
(embedded in an expert system) have created powerful
systems.

The CLEAR system readily demonstrates how expert systems
can relieve the analysts of the tedious and demanding chore of
monitoring screenfuls of data so that their time can be dedicated
to solving higher level problems. While CLEAR is confined to
fault isolation within the COBE-TDRS communications link,
the techniques used by this system can be applied to other
functions within the POCC. However, the ultimate goal would
be to develop a larger expert system or network of cooperating
expert systems that could perform all of the functions in the
control center.

Acknowledgements

I would like to thank Walt Truszkowski, Dolly Perkins and
Bob Dutilly for their assistance in preparing this paper.

References

1. Cholawsky, E.M. "Beating the Prototype Blues." in AI
EXPERT San Francisco, Vol. 3, No. 12, December, 1988,
pp. 42-49.

2. Hughes, P.M., "Integrating Expert Systems into an
Operational Environment." in Proc. for Computers in
Aerospace VII Conference, Monterey, CA. 1989.

3. Hughes, P.M., and Hull, L.G. "CLEAR: Communications
Link Expert Assistance Resource" in Proc. 1987 Goddard
Conference on Space Applications of Artificial Intelligence and
Robotics, Greenbelt, MD: 1987.

4. Pressman, R.S. Software Engineering- A Practitioner's
Approach. McGraw-Hill, Inc., New York, NY: 1987.

5. Smith, D.L. "Implementing Real World Expert Systems."
in AI EXPERT San Francisco, Vol. 3, No. 12, December,
1988, pp. 36-41.

293




